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What is Algorithm?

“An algorithm is a finite, definite, effective procedure, with some
input and some output.”

– Donald Knuth
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Return on Investment (ROI) Problem

Problem. m coins to invest n project.
profit function fi(x) denotes the return on investing project i
with x coins, i = 1, 2, . . . , n.

How to maximize the overall return?
Instance example: 50000 coins, 4 projects:

x f1(x) f2(x) f3(x) f4(x)

0 0 0 0 0

1 11 0 2 20

2 12 5 10 21

3 13 10 30 22

4 14 15 32 23

5 15 20 40 24
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Modeling

Input. n, m, fi(x), i ∈ [n], x ∈ {0, . . . ,m}
Solution. vector ⟨x1, x2, . . . , xn⟩, xi is the num of coins invested
on project i satisfying:

objective function: max
n∑

i=1

fi(xi)

constraints:
n∑

i=1

xi = m,xi ∈ {0, . . . ,m}
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Brute-Force Algorithm: Universal Algorithm for All Problems

Definition 1 (Brute-Force Algorithm)
A programming style that does not use any shortcuts to improve
performance, but instead relies on sheer computing power to try all
possibilities until the solution to a problem is found.

∀ n-dimension vector ⟨x1, x2, . . . , xn⟩ satisfying

x1 + x2 + · · ·+ xn = m,xi ∈ {0, . . . ,m}

compute the sum of return

f1(x1) + f2(x2) + · · ·+ fn(xn)

find the solution with highest return
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Example

x f1(x) f2(x) f3(x) f4(x)

0 0 0 0 0

1 11 0 2 20

2 12 5 10 21

3 13 10 30 22

4 14 15 32 23

5 15 20 40 24

x1 + x2 + x3 + x4 = 5

s1 = ⟨0, 0, 0, 5⟩, v(s1) = 24

s2 = ⟨0, 0, 1, 4⟩, v(s2) = 25

s3 = ⟨0, 0, 2, 3⟩, v(s3) = 32

. . .

s56 = ⟨5, 0, 0, 0⟩, v(s56) = 15

Solution: s = ⟨1, 0, 3, 1⟩
Highest return: 11 + 30 + 20 = 61
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Efficiency of Brute-Force Algorithm

each possible solution vector is a non-negative integer solution of
equation

x1 + x2 + · · ·+ xn = m

How to estimate the number of possible ⟨x1, x2, . . . , xn⟩
solution can be expressed as 0-1 sequence with the following
format: # 1 = m, # 0 = n− 1

1 . . . 1︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
x2

0 . . . 0 1 . . . 1︸ ︷︷ ︸
xn

n = 4, m = 7

candidate solution ⟨1, 2, 3, 1⟩ corresponds to:

1 0 1 1 0 1 1 1 0 1
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Efficiency of Brute-Force Algorithm

The number of such sequences is an exponential function of input
size

C(m+ n− 1, n− 1) =
(m+ n− 1)!

m!(n− 1)!

= Ω((1 + ϵ)m+n−1)

Brute-force algorithm is easy to design when the solution space is
enumerable, and always correct, but is not efficient when the
solution space is huge.
In most time, we need to design “smart” algorithm.
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Single Machine Scheduling Problem

Problem. n tasks, each task i requires time ti to process (without
waiting), refereed to minimum processing time. We have to assign
n tasks on a single machine.

flowtime of task i: starti = 0, endi − starti ≥ ti

Performance goal. find an assignment such that the total flowtime
of all n tasks is shortest.
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Modeling

Input.
task set: S = {1, 2, . . . , n}
processing time of task j: tj ∈ Z+, j ∈ [n]

Output. Schedule I, a permutation of S, i.e., (i1, i2, . . . , in)
Objective function. the flowtime of I:

t(I) =

n∑
k=1

(n− k + 1)tik

Solution. I∗ — minimize t(I∗)

t(I∗) = min{t(I) | I ∈ Permutation(S)}
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Solve: Greedy Algorithm

Greedy algorithm is a kind of heuristic algorithms
originated from your intuition
follow your heart

Strategy. shortest processing time (SPT) first
Algorithm. sort the processing time in an increasing order, then
process them sequentially
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Concrete Instance

task set S = {1, 2, 3, 4, 5}
minimum processing time: t1 = 3, t2 = 8, t3 = 5, t4 = 10,
t5 = 15

sort (3, 8, 5, 10, 15) in an increasing order ; Solution: 1, 3, 2, 4, 5

3 5 8 10 15

0 3 8 16 26 41

overall flowtime

t = 3 + (3 + 5) + (3 + 5 + 8) + (3 + 5 + 8 + 10)

+ (3 + 5 + 8 + 10 + 15)

= 3× 5 + 5× 4 + 8× 3 + 10× 2 + 15

= 94
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Proof of Correctness

Correctness. We have to ensure greedy algorithm yields the
optimal solutions for all instances

Proof. If not ⇒ ∃ optimal schedule I∗ with at least one reverse
order, i.e., task i and j are adjacent but ti > tj . Switch task i and
j in I∗ ; schedule I ′

I∗ ti tj

I ′ tj ti

flowtime comparison: t(I ′)− t(I∗) = tj − ti < 0 ⇒ contradicts to
the optimal property of I∗
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Heuristics is not always Correct

Counterexample.
Knapsack problem: four items need to insert into a knapsack, with
values and weights as below:

label a b c d

weight wi 3 4 5 2

value vi 7 9 9 2

the knapsack weight limit is 6.

How to choose items to maximize the total values in the backpack?
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Failure of Greedy Algorithm

Greedy strategy. highest value-weight ratio comes first, with
weight limit 6

sort vi/wi in a descending order: a, b, c, d

7

3
>

9

4
>

9

5
>

2

2

greedy solution: {a, d}, weight = 5, value = 9

better solution: {b, d}, weight = 6, value = 11
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Summary: Steps of Algorithm Design

1 Modeling. give formal description of input, output and
objective function

2 Design. Choose what algorithms? How to describe it?

3 Prove. Is the algorithm correct: yielding optimal solution for
all instances.

If so, how to prove it?
If not, can you find an counterexample?

4 Analysis. efficiency: time and space
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Insertion Algorithm

Insertion sort iterates, consuming one input element each iteration,
and growing a sorted output list.

At each iteration, insertion sort removes one element from the
input data, finds the location it belongs within the sorted list,
and inserts it there.
It repeats until no input elements remain.

5 7 1 3 6 2 4input

1 3 5 6 7 2 4middle state

1 2 3 5 6 7 4after inserting 2
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Demo of Insertion Sort

input 5 7 1 3 6 2 4

beginning 5 7 1 3 6 2 4

insert 7 5 7 1 3 6 2 4

insert 1 1 5 7 3 6 2 4

insert 3 1 3 5 7 6 2 4

insert 6 1 3 5 6 7 2 4

insert 2 1 2 3 5 6 7 4

insert 4 1 2 3 4 5 6 7
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Analysis of Insertion Sort

Complexity analysis
worst-case: O(n2) comparison and swap
best-case: O(n) comparison and O(1) swap
average-case: O(n2) comparison and swap

replace array with linked list: reduce swap operation in each round
to constant time

Advantages:
simple: Jon Bentley shows a three-line C version
adaptive: efficient for data sets that are already substantially
sorted
stable: does not change the relative order of elements with
equal keys
in-place: only require constant additional memory
online: can sort a data set as it receives it
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Bubble Sort

Bubble sort: pass through the list — compares adjacent elements
and swaps them if they are in the wrong order.

the pass is repeated until the list is sorted
named for the way smaller or larger elements “bubble” to the
top of the list (another name is sinking sort)

before pass

5 1 6 2 8 3 4 7

one pass

1 5 2 6 3 4 7 8
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Demo of Bubble Sort

input 5 8 1 3 6 2 4 7

pass 1 5 1 3 6 2 4 7 8

pass 2 1 3 5 2 4 6 7 8

pass 3 1 3 2 4 5 6 7 8

pass 4 1 2 3 4 5 6 7 8

pass 5 1 2 3 4 5 6 7 8
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Analysis of Bubble Sort

Complexity analysis
worst-case: O(n2) comparison and swap
best-case: O(n) comparison and O(1) swap
average-case: O(n2) comparison and swap

Advantages. Simple and stable
Disadvantages. Inefficient, only for education purpose
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Quick Sort

Quicksort is a divide-and-conquer algorithm:
1 Pick an element, called a pivot, from the array.
2 Partitioning: reorder the array to a low sub-array (values

smaller than the pivot) and a high sub-array (values larger
than the pivot), equal values can go either way. After this
partitioning, the pivot is in its final position.

Recursively apply the above steps to the sub-arrays.

Figure: Tony Hoare

invent in 1959 in Moscow State University
Soviet Union, where he studied machine
translation under Andrey Kolmogorov
Most significant work: Quicksort and
Quickselect, Hoare logic, Communicating
Sequential Processes (CSP) for concurrent
processes
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One Recursive Round of Quick Sort

input 5 8 1 3 6 2 4 7

1st swap 5 4 1 3 6 2 8 7

2nd swap 5 4 1 3 2 6 8 7

cross happens

partition 2 4 1 3 5 6 8 7

sub
problem 4 1 3 2 5 6 8 7
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Analysis of Quick Sort

Complexity analysis

worst-case: O(n2) comparison and swap (think about when?)
already sorted arrays

best-case: O(n logn) comparison and O(1) swap
average-case: O(n logn) comparison and swap

Advantages
quick: gained widespread adoption, e.g., (i) in Unix as the
default library sort subroutine; (ii) it lent its name to the C
standard library subroutine qsort; (iii) in the reference
implementation of Java.

Properties
non-stable
pivot-choice affect performance
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Merge Sort

Merge sort is a divide-and-conquer algorithm:
divide the unsorted list into n sublists, each containing one
element (a list of one element is considered sorted).
repeatedly merge sublists to produce new sorted sublists until
there is only one sublist remaining. (this will be the sorted
list.)

canonical case n = 2k

Figure: John von Neumann
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Demo of Merge Sort

input 5 8 1 3 6 2 4 7

1st merge 5 8 1 3 2 6 4 7

2nd merge 1 3 5 8 2 4 6 7

3rd merge 1 2 3 4 5 6 7 8
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Analysis of Merge Sort

Complexity analysis
worst-case, best-case, average-case: O(n logn) comparison
space: O(n) total with O(n) auxiliary (not in-place)

Advantages
quick: (i) Linux kernel for linked list; (ii) Android platform;
(iii) default sort algorithm in python and Java

Property
stable
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Comparisons Among Sorting Algorithms

Algorithm worst case best case average case stable
insertion sort O(n2) O(n) O(n2) yes
bubble sort O(n2) O(n) O(n2) yes
quick sort O(n2) O(n logn) O(n logn) no
merge sort O(n logn) O(n logn) O(n logn) yes
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Complexity Analysis

Which algorithm performs best?
How to evaluate it?
Can we find better sorting
algorithm?

n2

n logn

?

insertion sort
bubble sort
quick sort

merge sort

better lower bound
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Travelling Salesman Problem (TSP)

Problem. Given n cities and the distances between each pair of
cities, what is the shortest possible route that visits each city and
returns to the origin city?

c3

c1

c2 c4

5

6 3

10
9

9
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Formalization

Input. Finite set of cities C = {c1, c2, . . . , cn}, distance
d(ci, cj) = d(cj , ci) ∈ Z+, 1 ≤ i < j ≤ n.

Solution. A permutation of 1, 2, . . . , n, a.k.a. k1, k2, . . . , kn such
that:

min
{

n−1∑
i=1

d(cki , cki+1
) + d(ckn , ck1)

}

Can the objective function be simpler?

use modular n expression — 0, 1, . . . , n− 1

min
{

n−1∑
i=0

d(cki , cki+1
)

}
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About TSP

TSP (first formulated in 1930) is the most intensively studied
problems NP-hard problem in combinatorial optimization and
theoretical computer science.

TSP is used as a benchmark for many optimization methods.
Though TSP is computationally difficult, many heuristics and
approximated algorithms are known.

some instances with tens of thousands of cities can be solved
completely
even problems with millions of cities can be approximated
within a small fraction of 1%.

TSP has several applications
in its purest formulation: planning, logistics, and the
manufacture of microchips
slightly modified: DNA sequencing
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Knapsack Problem

Given n items, each with a weight and a value, determine the
number of each item to include in a collection so that the total
weight is less than or equal to a given limit W and the total value
is as large as possible.

name: someone who is constrained by a fixed-size knapsack
and must fill it with the most valuable items
0-1 variant: for each item, include or not
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Formalization

Solution. vector ⟨x1, x2, . . . , xn⟩ over {0, 1}n, xi = 1 iff item i is
included

objective function: max
n∑

i=1

vixi

constraint:
n∑

i=1

wixi ≤ W,xi ∈ {0, 1}, i ∈ [n]
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About Knapsack Problem

Knapsack (since 1897) often arises in resource allocation where the
decision makers have to choose from a set of non-divisible projects
or tasks under a fixed budget or time constraint, respectively. It is
NP-complete problem.

Hardness of the knapsack problem depends on the form of the
input.

one theme in research is to identify “hard” instances: identify
what properties of instances might make them more amenable
than their worst-case NP-complete hardness suggests
application in public-key cryptography systems, e.g., the
Merkle-Hellman knapsack cryptosystem.

The basic problem is a one-dimensional (constraint) knapsack
problem

a multiple constrained problem could consider both the weight
and volume of knapsack
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NP-hard Problem

NP-hardness (non-deterministic polynomial-time hardness) is a
class of problems that are

informally “at least as hard as the hardest problems in NP”
an efficient algorithm for a NP-hard problem implies efficient
algorithms for all NP problem

No “efficient” algorithms found yet:
complexity of known algorithm are at least exponential
function on input size
no one can prove the “non-existence” of efficient algorithms
for those problems

Thousands of NP-hard problems, widely spreads in all areas.
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Summary

The significance of algorithm
Algorithm evaluation criteria

Efficient: low time complexity & space complexity
Correct: yield optimal solution for all instances

The Scope of Algorithm
Design technique (exemplified by SMS and ROI)

modeling ; find an algorithm
proof ; prove the correctness

Complexity analysis (exemplified by sorting problem)
calculate the number of basic operations

Complexity theory (TSP and Knapsack)
complexity classification
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